MCA.II/05.14.0473

M.C.A. DEGREE II SEMESTER EXAMINATION MAY 2014

CAS 2205/2202 NUMBER THEORY

(New Scheme – Supplementary)

Time: 3 Hours

Maximum Marks : 50

PART A

(Answer ALL questions)

		(15 x	2 = 30)
I.	(a) (b)	Prove that there are infinitely many primes. Find the gcd of 595 and 252.	
	(c)	If P is prime and P/ab, then prove that P/a or P/b.	
II.	(a)	State and prove Wilson's theorem.	
	(b)	Solve the congruence $6x \equiv 15 \pmod{21}$,	
	(c)	Prove that equation $y^2 = x^3 - 2$ has only the integer solutions $(3, \pm 5)$.	
III.	(a)	Show that Legendre's symbol (n/p) is a complete multiplicative function of n .	
	(b) (c)	Find the quadratic residue modulo II. Define Jacobi symbol	
	(0)	Define Jacobi Symbol.	
IV.	(a)	Apply Rho method to factor 4087 with $f(x) = x^2 + x + 1$ and $x_0 = 2$.	
	(b)	What are pseudoprimes?	
	(C)	Define simple continued fraction.	
V.	(a)	Define zero-knowledge protocol.	
	(b) (c)	How do you send a signature in RSA? What are the basic requirements for a digital signature?	
	(0)	that are alle suble requirements for a digital signature.	
		PART B	
		$(5 \times 4 = 20)$)
VI.		State and prove Chinese Remainder theorem.	
VII.		State and prove Fermat's theorem.	
VIII		If D is prime and $D = 1 (mod A)$ then show that there exist integers a and h such that	
V 111		If r is prime and $r = 1 \pmod{4}$ then show that there exist integers a and b such that	L
		$a^2 + b^2 = p$.	
IX.		Solve $x \equiv 12 \pmod{31}$	
		$x \equiv 87 \pmod{127}$	
		$x \equiv 91 \pmod{255}$	
Х.		State the law of quadratic reciprocity. Determine the odd primes P for which 3 is a quadratic	tic
		residue and those for which it is a non-residue.	
XI.		Prove that $(2/r) = (-1)(p^2-1)/8$ where <i>B</i> is an odd positive integer	
		Prove that $(2/p) = (-1)^{n}$ where <i>P</i> is an odd positive integer.	
XII.		Explain Fermat's factorization method.	
XIII		OR Describe the elliptic curve factorization	
AIII.		besende die emptie eurve factorization.	
XIV.		Explain the RSA cryptosystem.	
		OR	

XV. Explain the requirements for message authentification codes.