M.C.A. DEGREE II SEMESTER EXAMINATION MAY 2014

CAS 2205/2202 NUMBER THEORY

(New Scheme - Supplementary)
Time: 3 Hours
Maximum Marks : 50
PART A
(Answer $\boldsymbol{A} \boldsymbol{L L}$ questions)
I. (a) Prove that there are infinitely many primes.
(b) Find the gcd of 595 and 252.
(c) If P is prime and P / ab, then prove that P / a or P / b.
II. (a) State and prove Wilson's theorem.
(b) Solve the congruence $6 x \equiv 15(\bmod 21)$,
(c) Prove that equation $y^{2}=x^{3}-2$ has only the integer solutions $(3, \pm 5)$.
III. (a) Show that Legendre's symbol (n / p) is a complete multiplicative function of n.
(b) Find the quadratic residue modulo II.
(c) Define Jacobi symbol.
IV. (a) Apply Rho method to factor 4087 with $f(x)=x^{2}+x+1$ and $x_{o}=2$.
(b) What are pseudoprimes?
(c) Define simple continued fraction.
V. (a) Define zero-knowledge protocol.
(b) How do you send a signature in RSA?
(c) What are the basic requirements for a digital signature?

PART B
$(5 \times 4=20)$
VI. State and prove Chinese Remainder theorem.

OR
VII. State and prove Fermat's theorem.

VIII If P is prime and $P \equiv 1(\bmod 4)$ then show that there exist integers a and b such that $a^{2}+b^{2}=p$.
IX. Solve $x \equiv 12(\bmod 31)$

$$
x \equiv 87(\bmod 127)
$$

$$
x \equiv 91(\bmod 255)
$$

X. State the law of quadratic reciprocity. Determine the odd primes P for which 3 is a quadratic residue and those for which it is a non-residue.

OR

XI.

Prove that $(2 / p) \equiv(-1)^{\left(p^{2}-1\right) / 8}$ where P is an odd positive integer.
XII. Explain Fermat's factorization method.

OR
XIII. Describe the elliptic curve factorization.
XIV. Explain the RSA cryptosystem.

OR
XV. Explain the requirements for message authentification codes.

