MCA DEGREE I SEMESTER EXAMINATION DECEMBER 2013

CAS 2104 DISCRETE MATHEMATICAL STRUCTURES
 (Regular \& Supplementary-2010 Revision)

Time: 3 Hours
PART A
(Answer $\boldsymbol{A} \boldsymbol{L L}$ questions)

$$
(15 \times 2=30)
$$

I. (a) Prove the equivalence $(p \wedge q) v(P \wedge\rceil q) \equiv p$
(b) Explain universal quantifiers and existential quantifiers.
(c) Define lattice. Give an example.
II. (a) State the counting principle and pigeonhole principle.
(b) Prove that $C(n, r)=C(n-1, r)+C(n-1, r-1))$
(c) Let $A=\{1,2,3,4\}$ and $R=\{(x, y) / \mathrm{x} \leq \mathrm{y}\}$. Write the relation matrix M_{R}.
III. (a) What is the order and degree of a recurrence relation?
(b) Solve the recurrence relation of the Fibonoci sequence of numbers; $F_{n}=F_{n-1}+F_{n-2 ;} n \geq 2$ with the initial conditions $\mathrm{F}_{0}=\mathrm{F}_{1}=1$
(c) Find the number of integer solutions of the equation $\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}+\mathrm{X}_{4}=0$; such that $X_{i} \geq 0, \mathrm{i}=1,2,3,4$,
IV. (a) State the axioms of Boolean algebra.
(b) Prove the Boolean identity: $x \oplus\left(X^{1} * y\right)=x \oplus y$
(c) Minimize the Boolean expression: $x \cdot y^{\prime}+x^{\prime} \cdot y+x^{\prime} \cdot y^{\prime}$.
V. (a) Explain different types of grammars.
(b) Find the language $L(G)$ generated by the grammar G with variables $\{S, A, B\}$, terminals $\{a, b\}$ and productions $\mathrm{S} \rightarrow \mathrm{a}, \mathrm{S} \rightarrow \mathrm{Sa}, \mathrm{S} \rightarrow \mathrm{b}, \mathrm{S} \rightarrow \mathrm{bS}$
(c) Compare DFA and NFA.

PART B

$$
(5 \times 4=20)
$$

VI. Prove that the relation congruence modulo 3 given by $R=\{(x, y) / x-y$ is divisible by 3$\}$ over the set of integers Z, is an equivalence relation. Determine the equivalence classes generated by the elements of Z . Also find the quotient set Z / R.

OR

VII. Explain the principle of mathematical induction.

Show that $1+1 / \sqrt{2}+1 / \sqrt{3}+1 / \sqrt{4}+\ldots \ldots . .1 / \sqrt{n}>\sqrt{n}$ for $n \geq 2$.
VIII. Let R be the relation on the set $\mathrm{A}=\{1,2,3,4\}$ such that the relation matrix M_{R} is
$M_{R}=\left[\begin{array}{llll}0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$
Find the symmetric and transitive closures of R.
OR
IX. Find the number of integers between 1 and 250 both inclusive that are not divisible by any of the integers 2,3,5 and 7

A particle is moving in the horizontal direction. The distance it travels in each second is equal to two times the distance it traveled in the previous second. If a_{r} denotes the position of the particle in the $r^{\text {th }}$ second, determine a_{r}, given that $a_{0}=3$, $a_{3}=10$.

OR
XI. Solve the following recurrence relation.

$$
a_{n+1}-8 a_{n}+16 a_{n-1}=4^{n} ; n \geq 1 ; a_{0}=1, a_{1}=8
$$

XII.

Using K-map, simplify the following Boolean expression
$\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{xy}^{1} z+x^{1} y z+x y z+x^{1} y^{1} z+x y z^{1}$
Draw the logical circuit for the resultant expression.
OR
XIII. In any Boolean algebra, show that
(i) $x y^{1}+x^{1} y=0$ iff $x=y$
(ii) $\left(x+y^{1}\right)\left(y+z^{1}\right)\left(z+\mathrm{x}^{1}\right)=\left(\mathrm{x}^{1}+\mathrm{y}\right)\left(\mathrm{y}^{1}+z\right)\left(z^{1}+x\right)$.
XIV.

State and prove pumping lemma. State its applications.

OR

XV. For $\sum=\{a, b\}$ construct DFA's that accept the sets consisting of;
(i) All strings with exactly one ' a '.
(ii) All strings with at least one ' a ' and exactly two b 's
(iii) All strings with exactly two a's and more than two b's.

