MCA DEGREE I SEMESTER EXAMINATION DECEMBER 2013

CAS 2104 DISCRETE MATHEMATICAL STRUCTURES (Regular & Supplementary-2010 Revision)

Time: 3 Hours

Maximum Marks: 50

PART A

(Answer ALL questions)

I.	(a)	Prove the equivalence $(p \land q) v (P \land \neg q) \equiv p$	$(15 \times 2 = 30)$
	(b)	Explain universal quantifiers and existential quantifiers.	
	(c)	Define lattice. Give an example.	
II.	(a)	State the counting principle and pigeonhole principle.	
	(b)	Prove that $C(n,r)=C(n-1,r)+C(n-1,r-1)$	
	(c)	Let $A = \{1, 2, 3, 4\}$ and $R = \{(x, y) x \le y\}$. Write the relation matrix M_R .	
III.	(a)	What is the order and degree of a recurrence relation?	
	(b)	Solve the recurrence relation of the Fibonoci sequence of numbers;	
		$F_n = F_{n-1} + F_{n-2}$; $n \ge 2$ with the initial conditions $F_0 = F_1 = 1$	
	(c)	Find the number of integer solutions of the equation	
		$X_1 + X_2 + X_3 + X_4 = 0$; such that $X_i \ge 0, i = 1, 2, 3, 4, .$	
			×
IV.	(a)	State the axioms of Boolean algebra.	
	(b)	Prove the Boolean identity: $x \oplus (X^{1*}y) = x \oplus y$	
	(c)	Minimize the Boolean expression: $x.y' + x'.y + x'.y'$.	
V.	(a)	Explain different types of grammars.	
	(b)	Find the language $L(G)$ generated by the grammar G with variables {S,A,B},	
		terminals $\{a, b\}$ and productions $S \rightarrow a S \rightarrow Sa S \rightarrow bS \rightarrow bS$	
	(-)		
	(c)	Compare DFA and NFA.	
		PART B	
			$(5 \times 4 = 20)$
VI.		Prove that the relation congruence modulo 3 given $R = \{(x,y) x - y \text{ is divisible by 3}\}$ over the set of integers Z, is an equivalent	by ence

 $R = \{(x,y) / x - y \text{ is divisible by 3}\}$ over the set of integers Z, is an equivalence relation. Determine the equivalence classes generated by the elements of Z. Also find the quotient set Z/R.

(P.T.O)

VII.	OR Explain the principle of mathematical induction.
	Show that $1+1/\sqrt{2}+1/\sqrt{3}+1/\sqrt{4}+\dots 1/\sqrt{n} > \sqrt{n}$ for $n \ge 2$.
VIII.	Let R be the relation on the set A= $\{1,2,3,4\}$ such that the relation matrix $M_{R is}$
	$M_R = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$
	0 0 0 1
	Find the symmetric and transitive closures of R. OR
IX.	Find the number of integers between 1 and 250 both inclusive that are not divisible by any of the integers $2.3.5$ and 7
	by any of the integers 2,3,3 and 7
Х	A particle is moving in the horizontal direction. The distance it travels in each second is equal to two times the distance it traveled in the previous second. If a
	denotes the position of the particle in the r^{th} second, determine a_r , given that $a_0=3$,
	a ₃ =10. OR
XI.	Solve the following recurrence relation. $a = 8a + 16a = 4^{n}$; $n \ge 1; a = 1, a = 8$
	$u_{n+1} - \delta u_n + 1\delta u_{n-1} - 4$, $n \ge 1$, $u_0 - 1$, $u_1 = 0$.
XII.	Using K-map, simplify the following Boolean expression
	F(x,y,z) = xy'z + x'yz + xyz + xy'z + xyz' Draw the logical circuit for the resultant expression.
VIII	OR
АШ.	(i) $xy^1 + x^1y = 0$ iff $x = y$
	(ii) $(x+y^1)(y+z^1)(z+x^1) = (x^1+y)(y^1+z)(z^1+x).$
XIV.	State and prove pumping lemma. State its applications. OR
XV.	For $\sum = \{a, b\}$ construct DFA's that accept the sets consisting of;
	 (i) All strings with exactly one 'a'. (ii) All strings with at least one 'a' and exactly two b's
	(iii) All strings with exactly two a's and more than two b's.