

## MCA DEGREE I SEMESTER EXAMINATION NOVEMBER 2014

## CAS 2104 DISCRETE MATHEMATICAL STRUCTURES

(2010 Revision - Supplementary)

Time: 3 Hours

Maximum Marks: 50

## PART A

(Answer ALL questions)

 $(15 \times 2 = 30)$ 

- Prove that  $(A \cap B)' = A' \cup B'$ I.
  - (b) Prove that  $p \rightarrow pvq$  is a tautology.
  - (c) Define a Lattice.
- II. (a) State the principle of inclusion and exclusion.
  - (b) In how many ways can 4 cards be selected from a pack of cards so as to include atleast
  - (c) If  $A = \{1, 2, 3, 4, 5\}$  and  $R = \{(1, 1), (1, 2), (2, 3), (3, 5), (3, 4), (4, 5)\}$  compute  $R^2$  and  $R^{\infty}$ .
- III. Solve  $a_n = 4a_{n-2}$ . (a)
  - (b) Find the characteristic function of recourence relation  $a_n + 6a_{n-1} + 9a_{n-2} = 9$ .
  - (c) Find an explicit formula for the sequence defined by  $a_n = 5a_{n-1} - 6a_{n-2}$  with initial conditions  $a_1 = 2$  and  $a_3 = 1$ .
- Obtain the disjunctive normal form of  $(x' \wedge y) \vee (X \wedge z)$ . (a) IV.
  - (b) Draw the circuit represented by  $xy + \overline{x}y$ .
  - (c) Prove that  $a \land (a \lor b) = a$ .
- V. (a) Draw a finite automation that accept all strings of zeros and ones that starts with 111.
  - (b) Distinguish between deterministic and non-deterministic finite automata.
  - (c) Define regular language.

## PART B

 $(5 \times 4 = 20)$ 

VI. Prove by method of mathematical induction  $1+2+2^2+...+2^n=2^{n+1}-1$ 

- VII. Convert the following argument into the language of symbols and check their validity. "Either the moon is cool or oxygen is a metal. The moon is cool. Therefore, oxygen is metal".
- VIII. If  $R = \{(1,4),(2,1),(2,2),(2,3),(3,2),(4,3),(4,5),(5,1)\}$  on the set  $A = \{1, 2, 3, 4, 5\}$ , then find  $M_R, M_R^2$  and  $M_R^3$ .

IX. State Pigeonhole principle. Find the minimum number of boys in a community to be sure that 5 of them are born in the same month.

(P.T.O.)

X. Solve the recussence relation  $a_n + 5a_{n-1} + 6a_{n-2} = 3n^2 - 2n + 1$ . **OR** 

XI. Give an explicit formula for Fibonaci sequence and solve it.

XII. Using Karnaugh Map to minimize the Boolean expression xy + x'y + xy' + x'y'.

XIII. Simplify the Boolean expression x'z + x'y + xy'z + yz.

XIV. State and prove pumping Lemma.

OR

XV. Consider the finite state automaton B defined by the following table.

| S\A            | a     | b     | С              |
|----------------|-------|-------|----------------|
| S <sub>0</sub> | $S_1$ | $S_0$ | $S_2$          |
| $S_1$          | So    | $S_3$ | S <sub>0</sub> |
| S <sub>2</sub> | $S_3$ | $S_2$ | S <sub>0</sub> |
| $S_3$          | $S_1$ | $S_0$ | $S_1$          |

- What are the states of B?
- (ii) Draw the transition diagram of B.