MCA.II/05.15.0389

M.C.A. DEGREE II SEMESTER EXAMINATION MAY 2015

Reg.No.

CAS 2201 COMPUTER GRAPHICS

(Supplementary)

Time : 3 Hours

PART A (Answer ALL questions)

 $(15 \times 2 = 30)$

Maximum Marks : 50

- I. (a) Explain the boundary fill algorithm to fill the interior of a polygon.
 - (b) Briefly explain Random Scan Systems.
 - (c) Explain Bundled attributes with an example.
- II. (a) Explain affine transformation what are the properties of it.
 - (b) Explain window-to-viewport transformations.
 - (c) Derive the transformation that generates rotation of an object point (x, y) θ° counter clockwise direction.
- III. (a) Define Bezier curve. What are the properties of it?
 - (b) Write short notes on BSP trees
 - (c) Define hierarchical modeling.
- IV. (a) Differentiate between object space and Image space method for visible surface detection.
 - (b) Explain Back face detection.
 - (c) Write the matrix form of 3D rotation transformation with respect to x-axis.
- V. (a) Briefly explain constant intensity shading.
 - (b) What are Illumination models?
 - (c) What is Gouraud shading?

PART B

 $(5 \times 4 = 20)$

VI. Briefly explain the midpoint circle algorithm.

OR

VII. Explain Bresenham's algorithm to draw a line

(P.T.O.)

VIII.	Define Clipping. Explain Sutherland-Hodgeman algorithm for clipping.
	OR
IX.	Explain the need for homogenous coordinate systems in transformations. Write down the matrix representations for 2-D translation, rotation and scaling.
Х.	Define Spline. Briefly explain natural Cubic Splines.
	OR
XI.	What are the properties of fractals? Describe the classification of fractals.
XII.	Explain how a 2D Cohen-Sutherland algorithm can be extended to clip a line against a 3-D view volume.
	OR
XIII.	Describe A-buffer method for visible surface detection.
XIV.	Briefly explain the animation sequence.
XV.	Explain HSV colour model.

2