MCA.I/11.14.0975

MCA DEGREE I SEMESTER EXAMINATION NOVEMBER 2014

CAS 2105 COMPUTER BASED OPTIMIZATION

(2011 Revision - Supplementary)

Reg. No.

Time: 3 Hours

Maximum Marks: 50

PART A

(Answer ALL questions)

 $(15 \times 2 = 30)$

- I. (a) Explain the terms (i) slack variable (ii) surplus variable (iii) artificial variable
 (b) How do you detect infeasibility of an LPP while solving by graphical method and
 - (b) How do you detect infeasibility of an LPP while solving by graphical method and simplex method?
 - (c) Explain 'Duality' in linear programming.

II.

(a) Obtain an initial basic feasible solution to the following transportation problem.

		Destination					
		D ₁	D_2	D_3	Supply		
	O1	6	8	4	14		
Origin	O ₂ .	4	9	8	12		
	O ₃	1	2	6	5		
[Demand	6	10	15			

D ...

. .

- (b) What is degeneracy in transportation problem? Discuss the method to resolve degeneracy in T.P.
- (c) Write the mathematical formulation of assignment problem.

III. (a) Define integer programming problem and briefly explain the importance of IPP.

- (b) Discuss briefly the cutting plane algorithm for solving pure integer programming problem.
- (c) What is binary linear programming problem?

IV. (a) Explain briefly the characteristics of dynamic programming problem.

- (b) State Bellman's principle of optimality.
- (c) Differentiate deterministic and probabilistic dynamic programming problem.

V. (a) Explain the characteristics of a queuing system.

(b) Explain the terms (i) queue length (ii) queue discipline.

(c) Describe the (M/M/1) queuing system.

 $0 \le X_1 \le 20$ $0 \le X_2 \le 12$

PART B

VI. Solve the following LPP by graphical method. Maximise $Z = 2X_1 + 3X_2$ Subject to $X_1 + X_2 \le 30$ $X_2 \ge 3$ $X_1 - X_2 \ge 0$

 $(5 \times 4 = 20)$

OR

Apply the principle of duality to solve. Minimise $Z = 2X_1 + 2X_2$ Subject to $2X_1 + 4X_2 \ge 1$ $-X_1 - 2X_2 \le -1$ $2X_1 + X_2 \ge 1$ $X_1, X_2 \ge 0$

Solve the following transportation problem.

VIII.

VII.

Destination Availability D. D-D: D: 70 01 6 3 1 9 55 Source 02 11 5 2 8 O₃ 70 7 10 12 4 85 35 50 45 Demand

OR

IX.

X.

XI.

A marketing manager has 5 salesmen and 5 sales districts. Considering the capabilities of the sales man and the nature of the districts, the marketing manager estimates that sales per month (in ` thousand) for each sales man in each district would be as follows.

		Sales Districts					
		Α	В	С	D	E	
	1	32	38	40	28	40	
Sales man	2	40	24	28	28 21 30 36 35	36	
	3	41	27	33	30	37	
	4	22	38	41	36	36	
	5	29	33	40	35	39	

Find the assignment of salesman to districts that will result in maximum sales.

Use branch and bound method to solve the following integer programming problem. Maximise $Z = X_1 + 4X_2$

Subject to $2X_1 + 4X_2 \le 7$ $5X_1 + 3X_2 \le 15$

 $X_1, X_2 \ge 0$; and are integers.

OR

Using Gomory's cutting plane method, solve the following mixed integer programming problem.

Maximise $Z = X_1 + X_2$

Subject to $3X_1 + 2X_2 \le 5$

 $X_2 \leq 2$

 $X_1, X_2 \ge 0$; and X_1 is an integer

(Contd....3..)

XII.

Use dynamic programming to solve Minimise $Z = Y_1^2 + Y_2^2 + Y_3^2$ Subject to $Y_1 + Y_2 + Y_3 \ge 15$ $Y_1, Y_2, Y_3 \ge 0$

OR

XIII.

XIV.

XV.

Use dynamic programming to solve the following LPP Maximise $Z = X_1 + 9X_2$ Subject to $2X_1 + X_2 \le 25$ $X_2 \le 11$ $X_1, X_2 \ge 0$

Arrivals at a telephone booth are considered to be poisson, with an average time of 10 minutes between one arrival and the next. The length of a phone call is assumed to be distributed exponentially, with mean 3 minutes.

- (i) What is the probability that a person arriving at the booth will have to wait?
- (ii) Find the average number of units in the system.
- (iii) What is the probability that an arrival will have to wait more than 10 minutes before the phone is free.
- (iv) The telephone company will install a second booth when convinced that an arrival would expect to have to wait at least 3 minutes for the phone. Bu how much should the flow of arrivals be increased in order to justify a second booth.

OR

A super market has two girls at the sales counters. If the service time for each customer is exponential with mean 4 minutes and if people arrive in a poisson fashion at the rate of 10 an hour,

- (i) What is the probability that an arrival will have to wait for service?
- (ii) What is the expected percentage of idle time for each girl?
- (iii) If a customer has to wait, what is the expected length of his waiting time?
