MCA.II/05.15.0395

Reg. No.



# M.C.A. DEGREE II SEMESTER EXAMINATION MAY 2015

## **CAS 2204 APPLIED NUMERICAL ANALYSIS** (Supplementary)

Time: 3 Hours

Maximum Marks: 50

# PART A

## (Answer ALL questions)

 $(15 \times 2 = 30)$ 

- I. (a) Describe the secant method and compare the secant iterative formula with the Newton formula for estimating a root.
  - (b) Write the algorithm for fixed point method for solving a system of non-linear equations.
  - (c) Muller's method is an extension of secant method. Explain.
- II. (a) What are the axioms of the Euclidean norm? Define the three matrix norms and illustrate through an example.
  - (b) What is meant by condition number of a matrix? Give examples of ill-conditioned and well-conditioned matrices.
  - (c) Explain the basic concept used in the relaxation method.
- III. Explain the method of least squares for fitting a power function  $y = ax^{b}$ . (a)
  - Explain B-spline curve. (b)
  - Given a set of n+1 points, state the general form of the n<sup>th</sup> degree Lagrange's (c) interpolation polynomial.
- IV. (a) State the three numerical differentiation formulae and compare their truncation errors.
  - (b) Describe the trapezoidal method of computing integrals.
  - (c) Explain Gaussian quadrature formula with an example.

(a) Explain modified Euler's method to solve y' = f(x, y) with the initial condition V.

 $y(x_0) = y_0.$ 

- (b) Explain the third and fourth order Runge-Kutta methods for solving a differential equation.
- (c) State the predictor and corrector formulae used in Adams-Moulton method.

## PART B

Find the roots of the equation,  $x^3 - 2x^2 - 3x + 10 = 0$ , correct to three decimal places. VI. OR VII. Use Bairstow's method to estimate the roots of  $f(x) = x^4 - 2x^3 + 4x^2 - 4x + 4$ . VIII. Solve the system by the Gauss elimination method. 2x + 2y + z + 2w = 7, x - 2y - w = 2, 3x - y - 2z - w = 3 and x - 2w = 0OR Find the solution to two decimal places, using Jacobi's method, for the system, 10x + 2y + z = 9,

> 2x + 20y = 2z = -44 and -2x + 3y + 10z = 22

IX.

 $(5 \times 4 = 20)$ 

| x    | 0    | 1            | 2    | 3     | 4     |      |        |    |                 |      |       |      |       |    |   |    |   |       |   |   |     |    |     |    |   |    |    |     |   |
|------|------|--------------|------|-------|-------|------|--------|----|-----------------|------|-------|------|-------|----|---|----|---|-------|---|---|-----|----|-----|----|---|----|----|-----|---|
| У    | 1    | 0            | 3    | 10    | 21    |      |        |    |                 | 0    | D     |      |       | 4  |   |    |   |       |   |   |     |    |     |    |   |    |    |     |   |
|      | 1    |              |      |       | a     |      | 1      | -  | , r             | -    | R     | 01   |       | 1  |   |    |   | <br>1 |   | n |     |    | 11  |    | a |    |    | •   |   |
|      |      |              |      |       | to ti | he   | data   | -2 | 2, -1,          | 0, 1 | 1, 2. | Sho  | w a   | IS | 0 | τr | a | n     | e | В | 5-9 | sp | 111 | ne | 2 | IS | un | iqu | e |
| if S | (-1  | ) is         | giv  | en    |       |      |        |    |                 |      |       |      |       |    |   |    |   |       |   |   |     |    |     |    |   |    |    |     |   |
|      |      |              |      |       |       |      |        |    |                 |      |       |      |       |    |   |    |   |       |   |   |     |    |     |    |   |    |    |     |   |
|      |      |              |      |       |       |      |        |    |                 |      |       |      |       |    |   |    |   |       |   |   |     |    |     |    |   |    |    |     |   |
|      |      |              |      | -     | -     |      |        |    | e foll          |      | -     |      | -     |    |   |    |   | -     |   |   |     |    |     |    |   | -  |    | -   |   |
| whic | h th | e ro         | d ha | -     | -     |      |        |    | e foll<br>t (in |      | -     |      | -     |    |   |    |   | -     |   |   |     |    |     |    |   | -  |    | -   |   |
|      | h th | e ro         | d ha | -     | -     |      |        |    |                 |      | -     |      | -     |    |   |    |   | -     |   |   |     |    |     |    |   | -  |    | -   |   |
| whic | h th | e ro<br>0.6. | d ha | as tu | rnec  | 1 fc | or tir |    | <i>t</i> (in    |      | onds) | . Fi | ind 1 |    |   |    |   | -     |   |   |     |    |     |    |   | -  |    | -   |   |
| whic | h th | e ro<br>0.6. | d ha | as tu | -     | l fo |        | ne |                 | seco | -     | . Fi | -     |    |   |    |   | -     |   |   |     |    |     |    |   | -  |    | -   |   |

Find the values of a, b, c so that  $y = a + bx + cx^2$  is the best fit to the data

OR

- Compute the values of  $\int_{0}^{1} \frac{dx}{1+x^2}$  by using trapezoidal rule with h = 0.5 and 0.25. Then XIII. obtain a better estimate by using Romberg's method.
- Given that  $\frac{dy}{dx} \sqrt{xy} = 2$ , y(1) = 1. Find y(2) in steps of 0.25 using Euler's modified XIV. method.

OR

\*\*\*

- Use the Runge-Kutta fourth order method to find y(1), given that y(0) = 1 and XV.
  - $\frac{dy}{dx} = \frac{y-x}{y+x}.$

XI.

XII.

Х.