MCA.II/05.14.0468

B

MCA DEGREE II SEMESTER EXAMINATION MAY 2014

CAS 2204 APPLIED NUMERICAL ANALYSIS

(Regular and Supplementary)

.

Time : 3 Hours		Maximum Marks : 50
		PART A
		(Answer ALL questions)
I.	(a) (b) (c)	Describe secant method and write its pseudocode. Explain the Newton's method and write its algorithm. Write the pseudocode of Horner's method. $(15 \times 2 = 30)$
Π.	(a)	Find the characteristic polymial of the matrix $A = \begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix}$
	(b) (c)	Write an algorithm for row-reduction in Guasian elimination. What is a norm? What are the different properties of norm?
III.	(a) (b) (c)	Discuss Bezier curves. Describe the construction of a B.spline surface. Explain the method of least squares for fitting curves of the form $ax^2 + bx + c$
IV.	(a) (b) (c)	Explain Simpson's one-third rule. Explain Romberg method of integration. Explain the method of constructing Newton-Gregory polynomials from an evenly spaced data.
V.	(a) (b) (c)	What are the limitations of the cubic spline for getting higher derivatives? Explain Taylor-series method for solving the first order differential equation. What is meant by the term stiff differential equation? Give an example.
		PART B (All questions carry equal marks)
		$(5 \times 4 = 20)$
VI.		Find the root of the equation $xe^x = \cos x$, using the secant method correct to four decimal places.
VII.		OR Find by Newton's method, the complex root of the equation $x^3 - x^2 - 1 = 0$
VIII.		Apply Gauss-Jordan method to solve the equations x+y+z=9 2x-3y+4z=13 3x+4y+5z=40 OR

(P.T.O.)

Find the inverse of the matrix IX. [1 −1 2[]] $A = \begin{bmatrix} 3 & 0 & 1 \end{bmatrix}$ Time: 3 1 2 0 Fit a cubic through the first four points of the following table and use it to find the X. interpolated value for x=3.0 I. 5.6 x : 3.2 2.7 1.0 4.8 f(x) : 22.0 17.8 14.2 38.3 51.7 II. OR (t Fit a parabola by the methods of least squares to the following data XI. (c III. (a (b Predict Y at X = 4(c Integrate $f(x) = \frac{1}{x^2}$ over the interval [0.2,1] using Simpson's $\frac{1}{3}$ rule. IV. (a) XII. (b) OR Write an algorithm to obtain and estimate of the derivative from difference table. (c) XIII. V. (a) For the differential equation, XIV. (b) $\frac{dy}{dt} = y - t^2$, y(0) = 1 starting values are known (c) y(0.2) = 1.2186, y(0.4) = 1.4682 & y(0.6) = 1.7379. Use the Milne method to advance the solution to t=1.2, carry four decimals. OR Use Runge-kutta method to find y(0.2) for the equation $\frac{d^2y}{dx^2} = \frac{xdy}{dx} - y$ given that VI. XV. VII. y(0) = 1, y'(0) = 0.VIII

2

IX.

MCA

X.

XI.

XII.

XIII.

XIV.

XV.