	 -	-	 	 	-	
Reg. No.						

MCA DEGREE HI SEMESTER EXAMINATION NOVEMBER 2015

CAS 2301 ADVANCED DATA STRUCTURES AND ALGORITHMS

(Regular)

Time: 3 Hours

Maximum Marks: 50

PART A (Answer ALL questions)

 $(15 \times 2 = 30)$

- I. (a) Define asymptotic notations for representing the time complexity while running algorithms.
 - (b) Order the following functions by growth rate: n^{15} , n^2 , $n \log n$, $n \log \log n$, $n \log 2$.
 - (c) Compare the time complexity of linear search and binary search.
- II. (a) What is an abstract data type? What is significance?
 - (b) Write the routine to delete a node from a singly linked list.
 - (c) What is a binary search tree?
- III. (a) What do you mean by separate chaining?
 - (b) Describe heap order property.
 - (c) Why is the time complexity of heap sort logarithmic?
- IV. (a) What is topological sorting? Why is a cyclic graph not suitable for topological sorting?
 - (b) Define residual edge, residual graph and augmenting path in network flow problem.
 - (c) What is a minimum spanning tree? What is the difference between Prim's and Kruskal's algorithm for finding MST? Which ADT can be used in both algorithms to operate efficiently?
- V. (a) What is Huffman code?
 - (b) Explain the best fit algorithm in bin packing.
 - (c) What is divide and conquer technique?

PART B

 $(5 \times 4 = 20)$

VI. Describe different algorithms for solving maximum subsequence sum problem.

OR

- VII. What are the general rules for finding the complexity of an algorithm?
- VIII. What are the ADT operations in binary tree and show how binary tree can be used as an expression tree.

OR

- IX. What is the difference in array implementation and linked list implementation of stack?
- X. What are the different collision resolution techniques in closed hashing?

OH

- XI. Explain quick sort and analyze the time complexity of the algorithm.
- XII. Describe Dijkstra's algorithm for finding shortest path.

OR

- XIII. Explain bipartite matching.
- XIV. Explain the greedy method used in scheduling problems.

OR

XV. Describe the divide and conquer method used in selection problem.